top of page


The single most important innovation in micro-irrigation in the past 2,000 years.

We have invented what is probably the most disruptive paradigm shift in agricultural irrigation since the second Imperial Dynasty of China.

HydroGrid™ is a new type of micro-irrigation that  can unlock the full genetic potential of your crops in natural soils, live soils / super soils, as well as Controlled Environment Agriculture (CEA) environments.

Our flagship product HydroGrid64™ allows growers to easily implement advanced agricultural techniques such as "Crop Steering", which consists in manipulating the plant's environment, in order to trigger metabolic and hormonal changes that promote vigorous growth and greater yields.

A little history...

Micro-Irrigation, (a.k.a. Drip Irrigation) which is widely accepted as the most effective form of irrigation, was actually invented by the Chinese during the Han Dynasty over 2,100 years ago as documented in the Fan Shengzhi shu


It disappeared from this historical record and the idea resurfaced around 1860 in Germany. 

Since then, it has had mixed success with farmers, and only a few major innovations by countries like Australia, Israel and the United States up until the 1960s, and hardly any innovation since then.

HydroGrid™ technology picks up where traditional precision irrigation left off, enabling crop steering and other advanced techniques to bring agriculture into the 21st century, and allow us to:

Evolve past the Neolithic™

Complete and

HydroGrid64™ is the combination of a patented cost effective robotic liquid diverter and an open and highly scalable hardware and software architecture. This combination provides a level of complete environmental analysis and control that was previously only partially available in very costly laboratory equipment. Our technology is able to deliver these capabilities at a very low cost to any size grower: from a home indoor grower using individual pots, to an open field farm, anywhere from 8 up to 304,000 individual irrigation zones (and/or individual plants), each with their own sensor and irrigation point.

Our patented Robotic Agricultural Irrigation and Analysis System allows both distribution of liquid feeds as well as selecting and mixing of individual nutrients from different sources. Our robotic diverter has other applications, for example it serves as the key component a real-time soil analysis robot (future AgroMe product), and even applications outside of the agricultural space such a general robotics.

Never before has there been a system that is able to deliver specific nutrients to individual plants and/or zones, and control every single environmental aspect in a scalable, secure and cost-effective way.

What is

  • HydroGrid™ is the only irrigation technology designed specifically for crop steering that is cost-effective and actually works.

  • Dramatic reduction of risk of estrogenic chemicals seeping into the soil and food supply as a result of polymer degradation. HydroGrid™ uses less than 90% of the plastic used in traditional drip, and there is no need to burry lines. Since HydroGrid™ is an Ultra Low Pressure System, rubber and silicone tubing can be used which contain no estrogenic chemicals.

  • HydroGrid™ is an Ultra Low Pressure system (< 10 psi) that brings the pump in close proximity to the plant. In the HydroGrid64™ configuration, each pump unit has a small buffer tank and can irrigate up to 64 plants or zones. This ultra low pressure aspect and distributed approach distributes the risk of single point of failure hence greatly increased MTBF (Mean Time Between Failures).

  • No emitter clogging, actually no emitters at all! Each pump station in  a HydroGrid™ based system is equipped with two peristaltic pumps which deliver precise amounts of water or nutrients to each plant so there is no need for emitters. Furthermore, the peristaltic pumps can easily overcome any bioclogging that may occur in the delivery pipe.

  • Computerized system with ambient sensors can adapt to changing conditions such that irrigation is always optimal and can be based on a number of factors such as PID controlled set points, Vapour Pressure Deficit (VPD) and additional custom rules by the customer.

  • In the HydroGrid64™ system, up to 4,750 Pump Units can work in tandem to provide growers with up 304,000 individual zones (or individual plants), each one with a dedicated, and very precise, soil water potential sensor and irrigation point. Moreover, the HydroGrid64™ system supports up to 23,750 accessory modules which include a plethora of additional environmental sensors and control modules. 

  • HydroGrid64™  plant units are Ultra Low Power so they can be completely powered by the sun or even by the grow lights in a CEA environment. 

  • Harvest-Friendly: Our products are designed to be robust and created with actual growers. Our HydroGrid™-based systems are easy to disconnect for harvest and to setup for a new crop.

  • IoT EnabledHydroGrid64™  is fully IoT-enabled (Internet of Things) and can store all sensor data in the AgroMe IoT Cloud™ and/or in the customer's private cloud or any other IoT Dashboard Provider that the customer may already be using.

  • Powerful Data Analytics: Rich and powerful data analytics provide valuable insights on every section and even on every single single plant in a crop.​


Open and


Apart from breakthrough innovation in sensory, control and precision irrigation, AgroMe has built the world's first secure, open and scalable architecture that is targeted specifically to CEA applications.

The ANC Open Agronomy Architecture™ combines proven Distributed Control System (DCS) architectural design principles, together with modern Internet of Things (IoT) technologies, providing our customers with the best of both worlds, without sacrificing security, reliability or performance. 

Systems developed with the ANC™ can be as small as a single device, and grow to thousands, or hundreds of thousands of plants.

Introduction to the 

ANC Open Agronomy Architecture™


The Magic of the ANC Master Controller

The main distinction of the AgroMe ANC™ and other architectures is the clean separation of the Control System (and Control Network) from the WiFi Network and IoT sides. This separation is achieved by the AgroMe Master Controller and is meant to keep the Control System secure and reliable.


The AgroMe Master Controllers are special devices that contain two separate processors, much like two separate computers in one. The Control Side is a an extremely reliable Microcontroller which is programmed using well proven Instrumentation and Control Standards much the same way that PLCs (Programmable Logic Controllers) are programmed. This guarantees that the control software will run continuously and securely on a single task, without the complexities of an Operating System, and without suffering from memory fragmentation and other problems associated with typical microprocessor+OS stacks and higher level programming languages.

For example, if the WiFi side stops responding, reboots or is compromised (e.g. hacked) in any way, the Control Side will keep operating without issue. This is because all configuration to run the Control System is stored in each Microcontroller's EEPROM so there in no need for the two networks to be linked in any way (at the wireless level), except through very specific connections at the hardware level between the two processors (on the actual board). Moreover, and for added security, AgroMe provides ample documentation and free support to encourage our customers to separate the Master Controller's WiFi Network from the customer's IT Network and configure special firewalls rules between them, to prevent direct access from Internet to the ANC.

The Master Controller (which is also a Control Module) acts as a gateway node to the Control Network, although in small applications it could very well be the only device present. Every Control Module has a Secure Radio Module with a frequency well below the 1Ghz range (which is totally safe for humans, animals and of course, your plants). Typical AgroMe indoor systems employ the RFM69 radios and outdoor applications may employ LoRa (longer range) modules or a combination of the two.

The Control System and Network

As mentioned above, the ANC™ Control Network is completely separated from any other networks, especially those from the Internet. In our systems IoT and Cloud Services are optional features, not necessary ones.

By itself, the Control System and Network operates much like any traditional Distributed Control System or DCS. In fact, the communications protocol in the Control Network is fundamentally Modbus with some minor extensions which we call ANC Modbus. Core logic and communications usually flows from the Master Controller to the Control Modules but the latter are independent and can also establish peer-to-peer communications (i.e. any component can talk to any other component so long as they are in the same network and are paired with the same Master Controller). Multiple Master Controllers can share the same network (e.g. as in the HydroGrid64™ product) but since radio communications is encrypted, only components paired to a single hub can communicate with each other (even if on the same radio network).

In ANC Modbus there are a total of 250 individual networks reserved for applications and each network can host up to 247 components (Modbus Standard). A single component can provide sensors and actuators for many plants, so for example in the specific configuration of the HydroGrid64™ product it can be extended to a maximum of 38,000 components for a total of 304,000 plants per site, although the architecture itself supports much more: a total of 61,750 individual components. 

Control Network Security

Control Radio Communications is encrypted and secure. Each device has a factory Pairing Key which is derived from the serial number and a salt value and algorithm parameters that are changed periodically and only known by AgroMe. When a new device is being paired into a Control Network, the hub's WiFi processor communicates with AgroMe servers and obtains the derivation function parameters and is able to derive the device Pairing Key which is sent to the Control Network's Master Microcontroller. The Master Controller is then able to establish a one-time encrypted link with the new device and exchange the Network Encryption Key which is randomly generated inside the Master Controller (upon first power-up or after a hard reset) and is unknown to any other party outside that particular Control Network, even to AgroMe. After pairing is complete, both devices establish a permanent encryption link using the Network Encryption Key. 

Open for Creativity

and no Vendor Lock-In

The AgroMe ANC™ is completely open and we also use Open Hardware as the basic building blocks of our boxed products. This means that customers are free to integrate ANC-based products to their existing technologies or even integrate Open Source / Open Hardware solutions of their own into our products, or even create products of their own. For example, instead of buying a turn-key products such as the HydroGrid64™ customers could simply purchase the components from us, third parties and build their own solutions. Customers and partners may also apply to obtain access to engineering documents and source code of our own products.

Below is an example of a simple 10 plant system that a anyone could build simply by putting together individual AgroMe and third-party components and writing the software themselves:


AgroMe® Robotic Agricultural Irrigation and Analysis System is protected under one or more of US, Canadian patents US20190320601A1CA3040523 and/or PCT applications world-wide.

Anchor 1
bottom of page